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A novel general property of the S- and T-isomers (a concept which has been 
introduced and elaborated elsewhere ~' ~) of alternant hydrocarbons is demon- 
strated, namely that due to the HMO total u-electron energy the S-isomer 
should always be more stable than the T-isomer. Some other classes of 
conjugated isomers are also constructed, for which similar inequalities are 
derived. 

( K eywords : Molecular topology; T E M O ; Topologically related isomers; Total 
~-electron energies) 

Topologischer Effekt bei MO-Energien, 4. Mitt.: Die 7:-Elektronen-Gesamtenergie 
von S- und T-Isomeren 

Es wird allgemein gezeigt, dab bei einem S-T-Isomerenpaar (beschrieben in 
~, 2) eines alternierenden Kohlenwasserstoffes infolge der HMO u-Elektronen- 
Gesamtenergie das S-Isomere stets stabiler sein sollte als das T-Isomere. Weitere 
Klassen konjugierter Isomere werden konstruiert und ghnliche Ungleichungen 
angegeben. 

1. Introduction 

A topological effect on molecular orbitals (TEMO) which relates the MO 
energy pa t t e rns  of  the so-called S- and  T-isomers has been recent ly  
d iscoveredk  The conclusions derived within  the simple Hi~ckel MO 
model  are in agreement  wi th  exper imenta l  da t a  and  ab initio 
calculat ions 1, 2 

l* 
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The basic idea of Paper  I 1 consists in considering the difference of the 
characteristic polynomials of S and T. As this difference is non-negative 
for all (real) values of the variable x, the H i i c k e l  MO energies of the S- and 
T-isomers obey an interlacing rule, called TEMO. In  the present  paper  
we wish to point out another  proper ty  of the S- and T-isomers, closely 
related to TEMO. Namely,  i f S  is an a l ternant  hydrocarbon,  then it has 
always greater  total  ~-eleetron energy than  its T-isomer. In  Section 2 we 
offer a general result for the total  ~-electron energy (as calculated within 
the HMO model), which as a consequence will yield the inequali ty 
E (S)/> E (T). In  Section 3 a number  of additional classes of conjugated 
isomers are described, which have analogous TEMO behaviour.  Several 
further inequalities for total  K-electron energy and reference energy are 
also deduced. 

The results of the present  paper  could be of some use in predicting the 
relative stabil i ty of S- and T-isomers, especially when the isomers 
studied are not sterically crowded, since it is well-known ~, HMO total  7r- 
electron energies of conjugated hydrocarbons correlate well with 
experimental  heats of formation and enable their calculation with an 
error of some 0.1~o. 

In  the following we will use a graph-theoretical  terminology and 
formalism closely similar to tha t  of Paper  I. I f  G is a graph on n vertices, 
then # (G) denotes its #-polynomial4; # (G) is a polynomial  of degree n in 
the variable x; in addition # (G) depends on a pa ramete r  t. Therefore, we 
m a y  write # (G) = # (G, t, x). For  t = 1 the #-polynomial reduces to the 
characteristic polynomial  ~0 (G) of the graph G. For t = 0 the p- 
polynomial  reduces to the matching polynomial  ~ (G) of the graph G. 
More details on the polynomials # (G), ~0 (G) and e (G) can be found 
elsewhere 4, 

I f  a is a ver tex of G, then G -- a denotes the subgraph obtained by 
deletion of a and all incident edges from G. The subgraph obtained by  
deletion of the vertices a and b from G is denoted by  G -- a -- b, etc. 

In  Paper  I we considered molecules built from two fragments,  
connected by  a certain number,  l, of linking bonds. The special case 
arises when the both bonding fragments  are the same and the linking 
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Fig. 1. Pairs of S- and T-isomers belonging to Class 1; the Roman number used in 
Table 1 indicates the isomer under consideration 
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bonds  connect  the same group of  a toms  in the bo th  parts.  The 
con juga ted  sys tems of  the above type  with l = 2 will be referred as 
belonging to Class 1. They  are presented by  the graphs  S and  T. As a 
consequence of  the  construct ion,  the isomer S possess a plane of  
s y m m e t r y  while the  isomer T has a center  of  inversion. The building 
f ragment  is denoted  by  A, two such f ragments  are connected th rough  
the  vertices a and  b. The n u m b e r  of  vertices of  A is n; hence, S and T 
possess 2 n  vertices (Scheme 1). 

Some examples  of  S- and  T-isomers are given in Fig. 1. 
The examples  below m a y  il lustrate the mode  of  the cons t ruc t ion  of  

such pairs (Scheme 2). 

One sees t h a t  different f ragments  could lead to the same T graph.  
The basic equat ions  of  Pape r  I are given as follows: 

it (S) = it (A) 2 -- it (A -- a) ~ -- it (A -- b) 2 + 

+ i t  ( A  - -  a - -  b )  2 - -  2 t [ X  i t  ( A  - -  Pab)] 2, 

i t(T) = it (A) 2 -- 2 i t (A  - - a ) i t ( A  - -b)  q- 

+ it (A -- a --  b) 2 --  2 t [ E  it (A -- Pab)] 2, 

(1) 

(2) 

where Pab denotes  a p a t h  connect ing the vertices a and  b, and  the  
summat ion  on the r.h.s, of  bo th  (1) and (2) ranges over all pa ths  of  A, 
connect ing a and b. An  immedia te  consequence of  (1) and  (2) is 

it ( T )  - it (S )  = l i t  ( A  - a)  - it ( A  - -  b) ]  ~ (3) 

Hence,/2 (T) - # (S) is non-negat ive  for all real values of  the variable x. 
For  t = 1 and  t = 0 we obta in  the  following two special cases: 

go ( T )  - -  go (S )  = [go ( A  - -  a )  - -  ~a ( A  - -  b ) ]  2, 

( T )  - -  a ( S )  = [ ~  ( A  - -  a )  - -  ~ ( A  - -  b ) ]  ~ 
(4) 

Note  t h a t  in the  general case the subgraphs  A - - a  and  A - - b  m a y  
possess cycles. Therefore,  the  corresponding match ing  and character-  
istic polynomials  would  differ. 

As shown in Pape r  11 the following inequal i ty  is derived f rom eq. (4): 

x ~  < x ~ < x ~ < x ~  < 
~-- 1 ---- 2 - - - -  ~ ' ' "  

< X S 2 n _ l  < X T n _ I  < X T n  < X S " ' "  ---- ~ ~ ~. 2n" 

(5) 

This equat ion  expresses the  interlacing rule ment ioned  above. 
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2. An Inequality Between the Total u-Electron Energy of the S- and T- 
Isomers 

We show here t h a t  if A represents  an a l t e rnan t  h y d r o c a r b o n  
f ragment ,  then  for an a rb i t r a ry  S, T pair  the following inequal i ty  holds 

E (S) >~ E (T), (6) 

where E (X) denotes  the  Hiic]cel to ta l  u-electron energy of  a con juga ted  
sys tem X, expressed in (negative) fi units. P rov ided  the contr ibut ions  of  
the a- and  core electrons to the energy  conten t  of  the S- and  T-isomers 
are near ly  the  same, the energies of  these isomers are discr iminated by  
their  ~-electron contr ibut ions ,  which are well reproduced within  the  
f ramework  of  the  simple H M 0  model  s. Hence,  the isomer S is predic ted 
to be t h e r m o d y n a m i c a l l y  no t  less stable t han  the isomer T. 

We will prove,  in fact,  a sl ightly more general s ta tement .  I n  order to 
do this we need some addi t ional  definitions. 

A po lynomia l  R (x) is said to be even i f R  ( -- x) = R (x) and  is said to 
be odd i f R  ( --  x) = -- R (x). A polynomial  R (x) is said to be a l t e rnan t  if 
it can be wr i t ten  in the form 

R(x) = x  m - f i x  m-2 + r e x  m - 4 - r 3 x  m-6 + . . .  

-- • + ( -- 1) [~/2] rim~2] x m-2[~/2], 
(7) 

where [m/2] = m/2 if m is even and [m/2J = (m -- 1)/2 if m is odd, and 
r i >~ 0 for i = l, 2, . . . ,  [m/2]. I n  other  words R (x) is a l t e rnan t  if it is 
ei ther  even or odd and if its coefficients a l ternate  in sign. 

I f  all the  zeros of  an even or odd polynomial  are real numbers ,  then  
this po lynomia l  is necessarily a l ternant .  The character is t ic  po lynomia l  
of  an a l t e rnan t  h y d r o c a r b o n  is, therefore,  a l ternant .  The match ing  
polynomia l  of  any  conjuga ted  h y d r o c a r b o n  is a l t e rnan t  4, 6. 

Le t  P (x) and  Q (x) be two a l te rnan t  polynomials  of  degree m hav ing  
real zeros Pl, P2, • • -, pm and ql, q2 . . . . .  qm, respectively.  Le t  

m m 

(P) = ~ Ipil and ~ ( Q ) =  ~ Iq~l. (8) 
i - 1  i = l  

I f  P (x) is the character is t ic  po lynomia l  of  an a l t e rnan t  hydrocarbon ,  
then  s (P) represents  the Hiickel to ta l  7:-electron energy. I f  P (x) is the  
ma tch ing  polynomia l  of  a hydrocarbon ,  then  e (P) represents its 
reference energy,  as calculated within  the  topological  resonance energy  
(TRE)  model  6, which neglects the cyclic contr ibut ions.  

The following result  holds:  
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I f  the difference of  the polynomials  P (x) and Q (x) can be presented 
a S  

Q (x) - P (x) = R 1 (x)" [ R  2 (x)] 2, (9) 

where R 1 (x) is an a l te rnant  and R 2 (x) an even or odd (but no t  necessarily 
a l ternant)  polynomial ,  then  

(P)~>s(Q)  if m - m  1 - 2 m  2 = - 2 ( r o o d 4 )  
(10) 

(P)~<s(Q) if m - m  1 - 2 m ~ = 0 ( m o d 4 )  

where m 1 is the degree of  R 1 (x) and m 2 is the degree of  R 2 (x). 
Note  t h a t  the condit ion Q (x)/> P (x) needs no t  be fulfilled for all x as 

it is required in TEMO 1. This condit ion holds in the special case m 1 = 0. 
I n  order  to prove (10), we in t roduce first a po lynomia l  R + (x), 

associated with the polynomial  R (x) in the following way:  

R + (x) = i - m R  ( i x ) .  ( l l )  

Now, if R (x) is a l ternant ,  then by  eq. (7), 

R + (x) = x '~ + r, x m - z  + r.~ x TM 4 + . . .  + r [~/2] x*~ 2[m/2] (12) 

and R + (x) is posit ive for all x > 0. I n  addit ion,  i f R  (x) is ei ther  even or 
odd, then R + (x) is a polynomial  with real coefficients. Then  [R + @)]2 is 
non-negat ive  for all real values of  x. Hav ing  these relat ions in mind,  we 
get  f rom (9) 

[Q (i x) - P (i z ) ] .  i m - m l - 2 m l  : R + (x) [ R  + (x)] 2. (13) 

The r igh t -hand  side of  (13) is posit ive for all x > 0. Therefore,  
Q ( i x ) - P ( i x )  >~0 if m - m  1 - 2 m :  is divisible by  four  and  
Q (i x) - P (i x) ~< 0 if m - m 1 - 2 m 2 is even, bu t  no t  divisible by  four. 

Now, the appl icat ion of  C o u l s o n ' s  integral  formula  7 

2 0o IP(ix)l 
= -  ~ m - -  dx (14) ( P ) - ~ ( O )  ~ o Q( ix )  

completes the proof  of  the relat ions (10). 
The proof  of  the  inequal i ty  (6) is now immediate .  F r o m  (4) we see 

t h a t  the polynomials  go (T) and go (S) obey the  condit ions (9) whenever  
the f r agment  A is an a l t e rnan t  hydrocarbon .  Name ly  then  go (A -- a) and  
go (A -- b) are a l t e rnan t  polynomials  of  degree n --  1 and their  difference 
is an even or odd polynomia l  of  degree n -- 1 -- 2 k, with k being a certain 
posit ive integer. Then  m = 2n ,  m 1 = 0 and  m 2 = n -- 1 -- 2k.  Thus,  
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relation (6) is a special case of the relations (10) which have already been 
proved. 

From the above analysis is it evident tha t  the difference 
E (S) -- E (T) vanishes if and only if go (A -- a) -= go (A -- b). A trivial 
case when this occurs is when a and b are equivalent centers; then the S- 
and T-isomers coincide. A non-trivial case occurs when A -- a ~ A -- b, 
but  go (A -- a) - go (A -- b). Then also the S- and T-isomers (which are 
different) have equal characteristic polynomials. A simple example of 
this type,  but  of only limited chemical relevance, is offered by  A 
representing the skeleton of vinylbenzene (Scheme 3). 

Scheme 3 

A-a  A - b  

qb(A- a) -=¢(A - b) 
b 

In  the great  major i ty  of cases the polynomials go ( A -  a) and 
go (A -- b) are different, and then (6) will be a strict inequality. 

Our results are i l lustrated in Table 1, where Hiickel total  u-electron 
energies of some pairs of a l ternant  S- and T-isomers are presented. 

Table 1. Hiickel total u-electron energies (in fl units) of alternant S- and T-isomers 
of Class 1 [as the number of centers increases the density of the MO's increases too 
and as the result the difference between E (S)  and E (T)  might become negligible 

small] 

Pair E (S) E (T) Pair E (S) E (T) 

(I) 27.819 27.816 (IV) 42.242 42.196 
(II) 39.76886 39.76880 (V) 30.762 30.544 
(III) 45.91474 45.91400 (VI) 19.448 19.313 

In  a completely analogous manner  we deduce from (5) 

E R (S) >~ E R (T), (15) 

where E "e (X) is the reference energy of the molecule X in the TI~E 
model% Contrary  to (6), the inequali ty (15) holds for both  a l ternant  and 
non-al ternant  conjugated hydrocarbons.  

The result (6) holds for the to ta l  u-electron energies of dications and 
dianions of a l ternant  hydrocarbons if their number  of electrons equals 
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4 r. In  tha t  case the absolute value of the energy of HOMO (LUMO) is in 
S smaller or equal then in T 1, hence the difference E (S) -- E (T) is either 
enlarged or unchanged for the diions as compared with the neutral  
compounds. 

But  it is not possible to extend the result (6) to non-al ternant  
hydrocarbons and/or heteroeonjugated compounds. For  such systems, 
namely,  examples can be found where the T-isomer has greater  Hiickel  
to ta l  energy than  the S-isomer. Two such isomeric pairs are given in 
Scheme 4. 

Scheme 4 

S T S T 

E:  15.898 E= 15.231 E = 8.838 E= 8.8h7 

3. More Classes of Isomers and More Inequalities for Total u-Electron 
Energy 

Relations (10) can be applied not only to S- and T-isomers of Paper  I, 
but  to m a n y  other isomeric pairs, the characteristic or the matching 
polynomials of which fulfil the condition (9). In  the present  section we 
describe a few such classes of isomers and then apply  (10) in order to 
obtain inequalities for their total  u-electron and reference energies. As 
already mentioned, the S- and T-isomers of Paper  I are said to belong to 
Class 1. 

Class 2 

Let  C be a graph possessing two equivalent vertices u and v. In  other 
words, let the subgraphs C -  u and C -  v be isomorphic. Then the 
isomers of Class 2 are defined by  the graphs shown in Scheme 5. 

Scheme 5 

s 

a AAC 
T 
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A n  e x a m p l e  is d e p i c t e d  in  S c h e m e  6. 

Scheme 6 

( 

U s i n g  t h e  s a m e  m e t h o d s  as before ,  i t  c an  be  p r o v e d  t h a t  t h e  S-  a n d  T -  

i s o m e r s  o f  Class  2 o b e y  t h e  r e l a t i o n  

# (T) - -  # (S) = # (C - -  u - -  v) [#  (A - -  a) - -  # (A - -  b)] 2. (16) 

A n  i m p o r t a n t  spec ia l  case  o f  Class  2 i s o m e r s  is o b t a i n e d  b y  c h o o s i n g  C to  

possess  j u s t  t w o  v e r t i c e s  u a n d  v, i r r e s p e c t i v e  o f  w h e t h e r  t h e y  a re  

c o n n e c t e d  or  no t .  T h e n  # (C - -  u - -  v) - 1 a n d  one  has  

# (T) - -  # (S) = [#  (A - -  a) - -  # (A - -  b)] 2. (17) 

A n  e x a m p l e  o f  t h i s  k i n d  a re  t h e  t w o  i s o m e r i c  d i b e n z o p o l y a c e n e s  s h o w n  

in  S c h e m e  7. 

Scheme 7 

S 

Class 3 

I f  C has  t w o  pa i r s  o f  e q u i v a l e n t  v e r t i c e s  u, v a n d  w, z, t h e n  t h e  S-  a n d  
T - i s o m e r s  o f  Class  3 a r e  c o n s t r u c t e d  as d e p i c t e d  in S c h e m e  8. 

I t  c a n  be  s h o w n  t h a t  in t h i s  case  

# (T) - -  # (S) --  
(18) 

= [#  (C - -  u - -  z) - -  # (C - -  u - -  w)J .  [ #  (A - -  a) - -  # (A - -  b)J 2. 
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S c h e m e  8 

C C 

s l 

I f  one identifies the vertices u and w, and v and z, then  # (C -- u -- w) = 0 
and  eq. (18) reduces to eq. (16). Hence, the isomers of  Class 2 can be 
unders tood  as special cases of  isomers of  Class 3. 

C l a s s  4 

Let  the g raph  H be composed of  two disconnected components ,  each 
being isomorphic to A. Le t  the  g raph  F be obta ined  by  joining the  two 
vertices denoted  by  a in H (Scheme 9). 

S c h e m e  9 

H F 

I t  is easy to derive t h a t  

# (H) -- # (F) = # (A -- a) 2. (19) 

The formal  equivalence of  the eqs. (19) and  (4) implies the inter lacing of  
the double degenerate  MO's  of  H between pairs of  the  MO's  of  F as 
expressed by  eq. (5). This is in accordance wi th  the  well known fact  t h a t  
the  MO's of  two isolated molecules split under  the  bond  format ion.  

C l a s s  5 

Let  v 1, v 2 . . . .  vk and  w 1, w 2 . . . .  wk  be a rb i t r a ry  (but  distinct) vertices of  
the  cycle C~, n />  2 k. Let  fur ther  V1, V 2 . . . . .  V~ and W v W 2 . . . . .  W k  be 
two collections of  rooted trees. B y  ident i fying the roo t  of  V, with the  
ver tex  v~ and the  root  of  W ,  with the  ver tex w,, i = 1, 2 . . . . .  ]c, a g raph  is 
obta ined  which will be denoted  by  Z. 
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Since V 1, V 2 . . . . .  V~ and  W v W 2 . . . . .  W~ are aeyelie by  definition, the 
g raph  Z is unicyclie. Because of  Corol lary 1.2 given in the  paper  + one has 

k 

# (Z) = a (Z) -- 2 t I ]  # ( V;)- # (Wi), (20) 
i = 1  

where V~ and  W', denote  the  graphs  obta ined  by  deletion of  the  roots  
f rom V, and W,,  respectively.  F r o m  (20) follows t h a t  the difference 
p (Z) --  ~ (Z) is independent  of  the  choice of  the  vertices v~, v 2 . . . . .  vk and  
w 1, w 2 . . . . .  wk. If, in addit ion,  the rooted  trees V~ and  W, are isomorphic  
for all i = 1, 2 , . . , / c ,  then  

~ ( z ) - ~ ( z )  = 2 t  v , )  . (21) 

This equa t ion  is of  interest  for t = 1: 

~ ( z )  - e ( z )  = 2 ( v , )  . (22) 

In  this ease we say ghat  Z belongs to Class 5. The above  equa t ion  has the 
consequence t h a t  the  zeros of  the  character is t ic  and  the ma tch ing  
po lynomia l  of  a con juga ted  sys tem of  Class 5 are related in the same w a y  
as the  eigenvalues of  the S- and  T-isomers of  Class 1. 

A special ease of  (22) is 

( c . )  - ~ ( c 4  = 2. (23) 

A few examples  of  molecular  graphs  belonging to Class 5 are depicted 
in Scheme 10. 

S c h e m e  10 

¢+× 
Z 1, k= l  Z 2, k=2 Z3,k=2 

Class  6 

S- and T~like isomers of  Class 6 are represented by  the  graphs  shown 
in Scheme 11. 
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Scheme 11 

S 1 

A successive removal  of the edges connecting the three f ragments  of 
type A gives s 

p ( T )  - -  p ( S )  = [ #  ( A )  - -  # ( A  - -  a - -  b ) ] - [ p  ( A  - -  a )  - -  # ( A  - -  b ) ]  2. (24) 

Now we apply successively the result (10) to the above classes of 
molecular graphs. One arises to the following conclusions: 

Class 2. E (S) <~ E (T) provided A and C are a l ternant  hydrocarbon 
fragments,  i.e. S is predicted to be less stable than  T. The inequali ty 
holds irrespective of the size and the nature  of the f ragment  C. Equal i ty  
holds under the precisely same conditions as in the case of the relation 
(6). 

F rom (16) also the inequality E R (S) <~ E R (T) follows. I t  holds for 
both  a l ternant  and non-al ternant  S, T pairs. 

Class 3. From (18) we gain the very same conclusions about  the total  
u-electron energy of S and T as in the previous case, provided the 
expression g (C -- u -- z) -- # (C -- u -- w) is an al ternant  polynomial.  
However,  this lat ter  polynomial  needs not be a l ternant  even when C is 
a l ternant  and t = 1 or t = 0. 

Class 4. From (19) we deduce the two trivial relations E (H) < E (F) 
and E R (H) < E R (F). 

Class 5. Eq. (20) enables one to compare the energy and the reference 
energy of a molecule Z. I t  follows tha t  the actual  form of the inequali ty 
obtained depends only on the size of the cycle C.. In  part icular  

E (Z) > E R (Z) and T R E  (Z) > 0 if n -= 2 (rood 4) 
(25) 

E ( Z ) < E  ~(Z) a n d T I ~ E ( Z ) < 0  i f n - = 0 ( m o d 4 )  

irrespective of the nature  of the a t tached side groups V~ and W, This, 
however, is an already known result 9. 

Class 6. E (S) >~ E (T) provided A is an al ternant  hydrocarbon 
fragment.  E 2¢ (S) >~ E R (T) irrespective of the nature  of the f ragment  A. 
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