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A novel general property of the 8- and 7'-isomers (2 concept which has been
introduced and elaborated elsewhere! 2) of alternant hydrocarbons is demon-
strated, namely that due to the HMO total m-electron energy the S-isomer
should always be more stable than the T-isomer. Some other classes of
conjugated isomers are also constructed, for which similar inequalities are
derived.

( Keywords: Molecular topology; TEMO ; Topologically related isomers; Total
n-electron energies)

Topologischer Effekt bei MO-Energien, 4. Mitt.: Die n-Elektronen-Gesamienergie
von 8- und T-1someren

Es wird allgemein gezeigt, dal bei einem §-T'-Isomerenpaar (beschrieben in
1'2) eines alternierenden Kohlenwasserstoffes infolge der HMO n-Elektronen-
Gesamtenergie das S-Isomere stets stabiler sein sollte als das T'-Isomere. Weitere
Klassen konjugierter Isomere werden konstruiert und dhnliche Ungleichungen
angegeben.

1. Introduction

A topological effect on molecular orbitals (TEMO) which relates the MO
energy patterns of the so-called S- and 7'-isomers has been recently
discovered!. The conclusions derived within the simple Hiickel MO
model are in agreement with experimental data and ab initio
calculations® 2.
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The basicidea of Paper I'* consists in considering the difference of the
characteristic polynomials of S and 7'. As this difference is non-negative
for all (real) values of the variable z, the Hiickel MO energies of the S- and
T-isomers obey an interlacing rule, called TEMO. In the present paper
we wish to point out another property of the S- and T-isomers, closely
related to TEMO. Namely, if § is an alternant hydrocarbon, then it has
always greater total n-electron energy than its 7-isomer. In Section 2 we
offer a general result for the total m-electron energy (as calculated within
the HMO model), which as a consequence will yield the inequality
E(S) =z E(T). In Section 3 a number of additional classes of conjugated
isomers are described, which have analogous TEMO behaviour. Several
further inequalities for total m-electron energy and reference energy are
also deduced.

The results of the present paper could be of some use in predicting the
relative stability of S- and T-isomers, especially when the isomers
studied are not sterically crowded, since it is well-known?, HMO total z-
electron energies of conjugated hydrocarbons correlate well with
experimental heats of formation and enable their calculation with an
error of some 0.1%,.

In the following we will use a graph-theoretical terminology and
formalism closely similar to that of Paper I. If G is a graph on = vertices,
then u ((f) denotes its u-polynomial*; u (@) is a polynomial of degree n in
the variable ; in addition u () depends on a parameter £. Therefore, we
may write u (@) = p(G. ¢, x). For t = 1 the y-polynomial reduces to the
characteristic polynomial ¢ (&) of the graph G. For { =0 the u-
polynomial reduces to the matching polynomial « (@) of the graph G.
More details on the polynomials u(¢), ¢ (&) and o (G) ean be found
elsewhere® 5.

If o is a vertex of ¢/, then 7 — a denotes the subgraph obtained by
deletion of @ and all incident edges from (. The subgraph obtained by
deletion of the vertices ¢ and b from @ is denoted by & —a — b, ete.

In Paper I we considered molecules built from two fragments,
connected by a certain number, [/, of linking bonds. The special case
arises when the both bonding fragments are the same and the linking

Scheme 1
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Fig. 1. Pairs of 8- and T-isomers belonging to Class I; the Roman number used in
Table 1 indicates the isomer under consideration

Scheme 2
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bonds connect the same group of atoms in the both parts. The
conjugated systems of the above type with [ =2 will be referred as
belonging to Class 1. They are presented by the graphs § and 7. As a
consequence of the construction, the isomer S possess a plane of
symmetry while the isomer 7" has a center of inversion. The building
fragment is denoted by A, two such fragments are connected through
the vertices @ and 6. The number of vertices of A is n; hence, S and T
possess 2n vertices (Scheme 1).

Some examples of S- and 7T-isomers are given in Fig. 1.

The examples below may illustrate the mode of the construction of
such pairs (Scheme 2).

One sees that different fragments could lead to the same 7' graph.

The basic equations of Paper I are given as follows:

p(S) =u(AyP —p(d —a)p —pu(4 —b)>+

1
+pud—a—0b2—=2t[Zu(d —Py)1? .

p(T)y =u(Ay —2p(4 —a) p(4 —b) +

2
+,u(A_a“b)Z_Zt[Z:u(A_Pab):Pﬂ ( )

where P, denotes a path connecting the vertices a and b, and the
summation on the r.h.s. of both (1) and (2) ranges over all paths of 4,
connecting @ and b. An immediate consequence of (1) and (2) is

u(T) —p(8) = [u(4 —a) — p(4 —b)J2 3)

Hence, i (T') — 1 (8) is non-negative for all real values of the variable .
For ¢ =1 and ¢ = 0 we obtain the following two special cases:

_a/) - (P(A - b)]za

o(T)—o(8)=[e(4
[w(d —a) —a{d —b)]~

4
2 (T) — a(S) @)

Note that in the general case the subgraphs 4 —a and 4 —b may
possess cycles. Therefore, the corresponding matching and character-
istic polynomials would differ.

As shown in Paper 1! the following inequality is derived from eq. (4):

S 7 P 8
XXX, X5 5)
8 P 7 8
2K, 12X, 1 2X,,2X,,.

This equation expresses the interlacing rule mentioned above.
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2. An Inequality Between the Total n-Electron Energy of the S- and I-
Isomers

We show here that if 4 represents an alternant hydrocarbon
fragment, then for an arbitrary 8, T pair the following inequality holds

E(8) = E(T), (6)

where E (X) denotes the Hiickel total n-electron energy of a conjugated
system X, expressed in (negative) § units. Provided the contributions of
the a- and core electrons to the energy content of the §- and 7'-isomers
are nearly the same, the energies of these isomers are discriminated by
their w-electron contributions, which are well reproduced within the
framework of the simple HMO model®. Hence, the isomer S is predlcted
to be thermodynamically not less stable than the isomer 7.

We will prove, in fact, a slightly more general statement. In order to
do this we need some additional definitions.

A polynomial R (z) is said to be even if B (— x) = R (z) and is said to
be odd if R (— %) = — R (z). A polynomial R (z) is said to be alternant if
it can be written in the form

R(x) =xm—rlxm_2 +rzxm‘4—r3xm_6+ )
4 (= 1)[m/2] Momf2] xm—Q[m/Z],

where [m/2] = m/2 if m is even and [m/2] = (m — 1)/2 if m is odd, and
r;z0fori=1, 2, ..., [m/2]. In other words R (z) is alternant if it is
either even or odd and if its coefficients alternate in sign.

If all the zeros of an even or odd polynomial are real numbers, then
this polynomial is necessarily alternant. The characteristic polynomial
of an alternant hydrocarbon is, therefore, alternant. The matching
polynomial of any conjugated hydrocarbon is alternant® 6,

Let P (x) and ¢ (x) be two alternant polynomials of degree m having
real zeros p,, Py, ..7, Pm and q,, q,, .. ., gm, respectively. Let

Z |p:| and & Z lg:l. (8)

i=1 i=1

If P (x) is the characteristic polynomial of an alternant hydrocarbon,
then ¢ (P) represents the Hiickel total n-electron energy. If P (z) is the
matching polynomial of a hydrocarbon, then &(P) represents its
reference energy, as calculated within the topological resonance energy
(TRE) model®, which neglects the cyelic contributions.

The following result holds:
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If the difference of the polynomials P (z) and ¢ (x) can be presented
as

@ (x) — P(2) = R, (z) [R, (@) ], 9)

where | (x)isan alternant and R, (x) an even or odd (but not necessarily
alternant) polynomial, then

e(P) =

ze(Q) if m—m, —2m,=2 (mod4)
e(P) <

() if m—m, —2m, =0 (mod4) 10)

€
£
where m, is the degree of R, (x) and m, is the degree of R, (x).

Note that the condition @ () = P (x) needs not be fulfilled for all z as
it is required in TEMO!. This condition holds in the special case m, = 0.

In order to prove (10), we introduce first a polynomial R* (z),
associated with the polynomial R (x) in the following way:

R* (%) =i "R (iw). (11)
Now, if B (x) is alternant, then by eq. (7),
RY(@)=a™+r 2™ P40, " g™ P (12)

and R (z) is positive for all x > 0. In addition, if R (z) is either even or
odd, then R* (z) is a polynomial with real coefficients. Then [R* (x)]2is
non-negative for all real values of . Having these relations in mind, we
get from (9)

[Q(iz) — P(i)]-i" ™~ >™ = R} (z) [Ry (#)]" (13)

The right-hand side of (13) is positive for all x> 0. Therefore,

QUz)—P@x)=0 if m—m, —2m, is divisible by four and

Q@x)y—P(ix) <0if m —m, —2m, is even, but not divisible by four.
Now, the application of Coulson’s integral formula?

Pix)
Qi)

2
T

e(P) —e(Q) = Ojoln dz (14)

completes the proof of the relations (10).

The proof of the inequality (6) is now immediate. From (4) we see
that the polynomials ¢ (7') and ¢ (8) obey the conditions (9) whenever
the fragment 4 is an alternant hydrocarbon. Namely then ¢ (4 — a) and
@ (A — b) are alternant polynomials of degree n — 1 and their difference
isan even or odd polynomial of degreen — 1 — 2 k, with k being a certain
positive integer. Then m =2#%, m;, =0 and m, =n — 1 — 2%. Thus,
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relation (6) is a special case of the relations (10) which have already been
proved.

From the above analysis is it evident that the difference
E (8) — E(T) vanishes if and only if ¢ (4 —a)= ¢ (4 —b). A trivial
case when this occurs is when ¢ and b are equivalent centers; then the S-
and T-isomers coincide. A non-trivial case occurs when 4 —a £ 4 — b,
but ¢ (4 —a) = ¢ (A — b). Then also the §- and T-isomers (which are
different) have equal characteristic polynomials. A simple example of
this type, but of only limited chemical relevance, is offered by 4
representing the skeleton of vinylbenzene (Scheme 3).

Scheme 3

A-a # A-b
OlA-a)=d(A -b)

A

In the great majority of cases the polynomials @ (4 —a) and
¢ (A —b) are different, and then (6) will be a strict inequality.

Our results are illustrated in Table 1, where Hiickel total n-electron
energies of some pairs of alternant S- and 7-isomers are presented.

Table 1. Hiickel total m-electron energies (in f units) of alternant S- and T-isomers
of Class 1 [as the number of centers increases the density of the MO’s increases too
and as the result the difference between E (S) and E (T ) might become negligible

small]
Pair E(S) E(T) Pair E(S) E (T
M 27.819 27.816 (TV) 42.242 42.196
(I1) 39.76886 39.76880 (V) 30.762 30.544
(TIT) 45.91474  45.91400 (V) 19.448 19.313

In a completely analogous manner we deduce from (5)
E*(8) = B¥(T), (15)

where E¥ (X) is the reference energy of the molecule X in the TRE
model®. Contrary to (6), the inequality (15) holds for both alternant and
non-alternant conjugated hydrocarbons.

The result (6) holds for the total n-electron energies of dications and
dianions of alternant hydrocarbons if their number of electrons equals



8 A. Graovac el al.:

47. In that case the absolute value of the energy of HOMO (LUMO) is in
S smaller or equal then in 7™, hence the difference £ (S) — E (T') is either
enlarged or unchanged for the diions as compared with the neutral
compounds.

But it is not possible to extend the result (6) to non-alternant
hydrocarbons and/or heteroconjugated compounds. For such systems,
namely, examples can be found where the T-isomer has greater Hiickel
total energy than the S-isomer. Two such isomeric pairs are given in
Scheme 4.

Scheme 4
Ny N
O 0
(>—J Z W
N
S T S T
E=15.898 E=16.231 £E=-8838 E=8847

3. More Classes of Isomers and More Inequalities for Total 7-Electron
Energy

Relations (10) can be applied not only to S- and 7™-isomers of Paper I,
but to many other isomeric pairs, the characteristic or the matching
polynomials of which fulfil the condition (9). In the present section we

~describe a few such classes of isomers and then apply (10) in order to
obtain inequalities for their total n-electron and reference energies. As
already mentioned, the S- and 7T-isomers of Paper I are said to belong to
Class 1.

Class 2

Let C be a graph possessing two equivalent vertices # and v. In other
words, let the subgraphs ¢ —u and € —v be isomorphic. Then the
isomers of Class 2 are defined by the graphs shown in Scheme 5.

Scheme o
Al 188/ a
c /u v\ /u )v\ C
A I a b (Ig g A




Topological Effect on MO Energies 9

An example is depicted in Scheme 6.

Scheme 6

Using the same methods as before, it can be proved that the S-and 7'-
isomers of Class 2 obey the relation

p(T) — () = u(C —u—v) [n(4d —a) —u(4 —B)E.  (16)

An important special case of Class 2 isomers is obtained by choosing C to
possess just two vertices w and v, irrespective of whether they are
connected or not. Then u(C —u —w») =1 and one has

p(T) —pu®) =k —a) —p(d -0~ (17)
An example of this kind are the two isomeric dibenzopolyacenes shown

in Scheme 7.

oo

Class 3

If C'has two pairs of equivalent vertices u, v and w, 2, then the S- and
T-isomers of Class 3 are constructed as depicted in Scheme 8.
It can be shown that in this case

p(T) — p(8) =

18
SO —u—2) — p(C = — )] [u (A —a) — (A4 — by, D)



10 A. Graovac ef al.:

Scheme 8§
A |8 3 7 2 57 A
¢ u ov uo  Ov
wo oz wO z c

o O
A a b

) T

If one identifies the vertices » and w, and v and 2, then g (€' — % —w) =0
and eq. (18) reduces to eq. (16). Hence, the isomers of Class 2 can be
understood as special cases of isomers of Class 3.

Class 4

Let the graph H be composed of two disconnected components, each
being isomorphic to 4. Let the graph F be obtained by joining the two
vertices denoted by @ in H (Scheme 9).

Scheme 9

o /0 G/
VAR F Ve
H F

It is easy to derive that
p(H) —p(F) =p(d —a) (19)

The formal equivalence of the eqs. (19) and (4) implies the interlacing of
the double degenerate MO’s of H between pairs of the MO’s of F' as
expressed by eq. (5). This is in accordance with the well known fact that
the MO’s of two isolated molecules split under the bond formation.

Class §

Letw,,v,,...vxand w,, w,, . .. wxbe arbitrary (but distinct) vertices of
the cycle Cn, n = 2k. Let further V., V,, ..., Viand W, W,,..., W« be
two collections of rooted trees. By identifying the root of V: with the
vertex v; and the root of W, with the vertex w:, ¢ =1,2,...,k, a graph is
obtained which will be denoted by Z.
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Since V, V,,..., Veand W,, W,, ..., Wiare acyclic by definition, the
graph Z is unicyclic. Because of Corollary 1.2 given in the paper* one has

k
p(Zy =o(Z) —2¢ [] u(Viy-u (W), (20)
i=1
where Vi and Wi denote the graphs obtained by deletion of the roots
from V: and W., respectively. From (20) follows that the difference
u{Z) — a(Z)is independent of the choice of the vertices v, v,, ..., v« and

w,, W,, . .., wx. If, in addition, the rooted trees V: and W; are isomorphic
forall i =1,2,...,k, then

a<Z>—ﬂ<Z>=2t[Hu<Vé> g (21)

i=1 _

This equation is of interest for ¢t = 1:

a<Z>—<p(Z>=2[H o7 [ (22)

i=1 _

In this case we say that Z belongs to Class 5. The above equation has the
consequence that the zeros of the characteristic and the matching
polynomial of a conjugated system of Class 5 are related in the same way
as the eigenvalues of the S- and T-isomers of Class 1.

A special case of (22) is

2 (C) — @ (Cn) = 2. (23)

A few examples of molecular graphs belonging to Class 5 are depicted
in Scheme 10.

Scheme 10
Zy. k=1 Zy. k=2 Z3.k=2
Class 6

S- and 7-like isomers of Class 6 are represented by the graphs shown
in Scheme 11.
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Scheme 11

A successive removal of the edges connecting the three fragments of
type 4 gives®

p(T) —p(S)=p) —pd —a—=>b)]-[nd —a) —pud —b)]%. (24

Now we apply successively the result (10) to the above classes of
molecular graphs. One arises to the following conclusions:

Class 2. £ (8) < E (T} provided 4 and C are alternant hydrocarbon
fragments, i.e. § is predicted to be less stable than 7. The inequality
holds irrespective of the size and the nature of the fragment C. Equality
holds under the precisely same conditions as in the case of the relation
(6).
From (16) also the inequality Ef (S) < EB(T) follows. Tt holds for
both alternant and non-alternant S, 7' pairs.

Class 3. From (18) we gain the very same conclusions about the total
n-electron energy of § and 7 as in the previous case, provided the
expression p(C —u —2) — u(C —u —w) is an alternant polynomial.
However, this latter polynomial needs not be alternant even when C is
alternant and ¢ =1 or ¢ = 0.

Class 4. From (19) we deduce the two trivial relations ¥ (H) < E (F)
and E® (H) < B (F).

Class 5. Bq. (20) enables one to compare the energy and the reference
energy of a molecule Z. It follows that the actual form of the inequality
obtained depends only on the size of the cycle C.. In particular

E(Z)> E®(Z) and TRE(Z) > 0 if n =2 (mod4)

E(Z)< E®(Z)and TRE (Z) <0 if n =0 (mod4) (25)

irrespective of the nature of the attached side groups V: and W.. This,
however, is an already known result®.

Class 6. E(S) = E(T) provided 4 is an alternant hydrocarbon
fragment. EE(8) = E®(T) irrespective of the nature of the fragment 4.



Topological Effect on MO Energies 13

Acknowledgement

One of the authors (4.G.) thanks the Max-Planck-Gesellschaft for a grant.

References

v Polansky O. E., Zander M., J. Mol. Struct. 84, 361 (1982); in the further text
this is referred as Paper L.

2 Parts 1T and IT1: Polansky O. E., Zander M ., Motoc 1., Z. Naturforsch. 38 a, 196
(1983); Fabian W., Motoc 1., Polansky,0. E., 7. Naturforsch. 38 a, 916 (1983).

3 Schaad L. J., Hess jr. B. A., J. Amer. Chem. Soc. 94, 3068 (1972).

* Gutman 1., Polansky O. E., Theoret. Chim. Acta 60, 203 (1981).

% The p-polynomial depends, in fact, on a vectort = (t,,4,, .. ., %). In the present
paper, however, a special case of the y-polynomial is considered, namely when
t, =1, =... =1 =t The same assumption was made also in Paper I.

8 Azham J., J. Amer. Chem. Soc. 98, 2750 (1976); Gutmon I., Milun M.,
Trinajsti¢ N., J. Amer. Chem. Soc. 99, 1692 (1977).

7 Coulson C. A., J. Chem. Soc. 1954, 3111.

8 Polansky O. E., Graovac A., Match (Milheim) No. 13, 151 (1982).

® Gutman I. M., Bull. Soc. Chim. Beograd 44, 173 (1979).



